R16

[5+5]

Code No: 133AJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, April/May - 2018 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

	IANI-A	
		(25 Marks)
1.a)	Convert (67A9) ₁₆ into decimal.	[2]
b)	Add (+80) and (-70) using 2's complement.	[3]
c)	Write the truth table of Ex-OR Gate.	[2]
d)	Implement OR gate using NAND gates only.	[3]
d) e) f)	Write the truth table of half adder.	[2]
f)	Design half sub tractor circuit.	[3]
g)	Differentiate between Latch and flip flop.	[2]
h)	Draw the circuit diagram of Ring counter.	[3]
i)	Differentiate between RAM and ROM.	[2]
h) i) j)	Name any 3 logic micro operations.	[3]
	PART-B	
		(50 Marks)
2.a)	i) Convert (657) ₈ into decimal.	
	ii) Convert (2348) ₁₀ into hexa decimal.	
b)	Represent the decimal number 46.5 as a floating point number with 16 bit m	antissa and
	8 bit exponent.	[5+5]
	OR	
3.a)	i) Convert 110001.1010010 into hexadecimal.	

ii) Convert (423.25)₁₀ into Hex.

b) i) Simplify A(B+C)+AB+ABC

ii) Write the truth table and symbols of AND and OR gates.

4. Obtain the simplified expression in sum of products for the following Boolean function. a) $F(A,B,C,D) = \sum (2,3,12,13,14,15)$.

b) BDE+B'C'D+CDE+A'B'CE+A'B'C+B'C'D'E' [5+5]

Obtain the simplified expression in product of sums. 5.

a) $F(A,B,C,D) = \pi(0,1,2,3,4,10,11)$

b) $F(A,B,C,D) = \pi(1,3,5,7,13,15)$ [5+5]

6.a) b)	Design half adder using only NAND gates. Design a combinational circuit which converts BCD to Excess-3 code.	[5+5]
	OR	
7.a)	Design a 2 bit magnitude comparator.	
b)	Implement 4*16 decoder using two 3*8 decoders.	[5+5]
8.a)	Explain a right shift register.	
b)	Design a 3 bit Ripple counter.	[5+5]
	OR	
9.a)	What is a hazard? How do you eliminate hazards?	
b)	Design and explain Johnson counter.	[5+5]
10.a)	Explain different types ROMs.	
b)	Implement the following Boolean functions using PLA with 3 AND gates.	
	F_1 (ABC) = $\sum (3,5,7)$, $F_2 = \sum (4,5,7)$.	[5+5]
	OR	
11.a)	Explain the applications of Logic micro operations.	
b)	Explain shift Right and Left with examples.	[5+5]

---00000----

- .

Code No: 133AJ

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2019 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Each question carries 10 marks and may have a, b, c as sub questions.		
PART- A		
		(25 Marks)
1.a)	What are 2's complement and 9's complement of a numbers? Give examples.	[2]
b)	State and prove De Morgan theorems.	[3]
c)	What are minterms and maxterms? Give examples for each.	[2]
d)	Define pair quad and octet in K-Maps and give examples.	[3]
e)	Draw the logic circuit of a full adder and give its truth table.	[2]
f)	Write the functions of a decoder and multiplexer.	[3]
g)	Draw the logic diagram of a master slave J-K flip-flop.	[2]
h)	Describe the race free state assignment in asynchronous sequential circuits.	[3]
i)	What are PLAs and PALs?	[2]
j)	Explain about arithmetic operations with examples.	[3]
PART-B		
		(50 Marks)
2.a)	Explain various number systems and codes and their conversion with examp	les for each.
b)	Simplify the following Boolean expressions to a minimum number of literals	
	(i) $ABC+A'B+ABC'$ (ii) $xy + x(wz+wz')$	[5+5]
2 -1	OR	
3.a)	Express the following numbers in decimal: (10110.0101) ₂ , (16.5) ₁₆ , (26.24) ₈ .	
b) c)	Demonstrate by means of truth tables the Boolean Associative law and distrib Simplify the Boolean expression to minimum number of literals: (A+B)' (A'+	
-)	in booten expression to minimum number of merma, (11 b) (11	. [10]
4.a)	Simplify the following Boolean functions, using a four variable Karnaugh map method	
	and implement the simplified function using NAND gates	
	$F(A,B,C,D) = \sum 0.2.4.5.6.7.8.10.13.15$	
b)	Show that the dual of the exclusive OR is also its compliment.	[5+5]
	OR	
5.a)	Draw the multiple level NAND circuit for the following expression:	
	(AB'+CD')E+BC(A+B)	
b)	Simplify the following four variable Boolean function and implement the	same using
50	NAND logic. $F(A, B, C, D) = \sum (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$	[5+5]
	per er print 1971 1971 1971 1971 1971 1971 1971	10,000

_

- 6.a) Construct a 4-bit BCD adder-substractor circuit using BCD adder and 9's complementer.
- b) Explain the working and functions of decoders and encoders. Construct 2/4 line decoder with logic gates with enable input.

OR

- 7.a) Construct a 4 bit 2's complement adder using full adders and perform addition and subtraction by taking 4-bit numbers with examples.
 - Explain the design procedure for multiplexers and de-multiplexers and draw the logic diagram of a 4-to-1 line multiplexer with logic gates. [5+5]
- 8.a) Design 4-bit shift register using D flip-flops and explain its working with the help of timing diagrams.
- Design a counter with the following repeated binary sequence: 0,1,2,3,4,5,6, use b) JK flip-flops.

OR

- 9.a) Draw the circuit diagram of a 4-bit binary counter with parallel load and explain its working with its function table.
 - Design a 4 bit synchronous counter with D flip flops and explain its working. b)
- Given 32 × 8 ROM with enable input, Show the external connections necessary to construct a 128 × 8 ROM with 4 chips and a decoder.
 - b) Explain the working of a PLA with a schematic and implement the following two Boolean functions with a PLA:

 $F_1(A, B, C) = \sum (0, 1, 2, 4)$ and $F_2(A, B, C) = \sum (0.5.6.7)$. [5+5]OR

Explain the functions and applications of PLAs in memory addressing and implement 11.a) the following two Boolean functions with a PLA:

 $F_1(A, B, C) = \sum (0, 1, 3, 5)$ and $F_2(A, B, C) = \sum (1, 2, 4, 7)$

What are sequential programmable devices? Draw the sequential programmable logic for a basic microcell logic.

[5+5]

Code No: 133AJ

structure.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2017 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit

	Each question carries 10 marks and may have a, b, c as sub questions.	unit.
	PART- A	
	(25	Marks)
1.a)	Subtract the following using 1's and 2's complement $(101)_2$ - $(10110)_2$.	[2]
b)	Distinguish between canonical and standard forms by giving an example.	[3]
c)	Derive the sum of minterms for the function $f(a,b,c)=a'b+b'c'$	[2]
d)	Implement the following function using only NAND Gates $F=a.(b'+c')+$	
α)	imprement the following function using only filter boutes fruit (b) c)	[3]
e)	Differentiate multiplexer and de-multiplexer.	[2]
f)	Draw the diagram of 4-Bit Parallel adder cum parallel subtractor.	[3]
g)	Show the excitation table and truth table of JK flip flop.	[2]
h)	Differentiate critical and non-critical race.	[3]
i)	Define Register Transfer Language.	[2]
j)	Differentiate PLA and PAL.	
3)	Differentiate FLA and FAL.	[3]
	PART-B	
		Marks)
2.a)	What are the various logic gates, give the representation along with t	,
2.4)	table.	ne trutii
1 . V	1237 723	mant fan
b)	What is the use of complements? Perform subtraction using 7's complete the given Page 7 graphers (565) (666)	
	the given Base-7 numbers (565)-(666).	[5+5]
2 2)	OR	
3.a)	Convert the following to the corresponding bases i) (9BCD) ₁₆ = () ₈	
	1) $(9BCD)_{16} = ()_8$ ii) $(323)_4 = ()_5$	
b)	Given the 8 bit data word 11011011, generate the 12 bit composite word	1 for the
U)	Hamming code that corrects and detects single errors.	[5+5]
	Transming code that corrects and detects single errors.	
4.a)	Derive the product of maxterms for $f(a,b,c,d)=a.b.c+b'.d+c.d'$.	
b)	Derive and Implement Exclusive OR function involving three variable	e neina
U)	only NAND function.	[5+5]
	OR	
5 0)	Obtain the simplified expression in SOP form of	
5.a)		
1.5	$F(a,b,c,d,e) = \sum_{n=0}^{\infty} (1,2,4,7,12,14,15,24,27,29,30,31) \text{ using K-maps.}$	
b)	Implement the function $f(a,b,c)=\pi(0,1,3,4)$ using NAND-NAND two le	vel gate

6.a)	Implement and odd parity generator for 3-bit using a decoder.	
b)	Design a circuit for 2-bit binary multiplier.	[5+5]
	OR	
7.a)	Define a multiplexer? Draw a 4:1 multiplexer for the function $f(a,b,c,d)=\sum(0, 4,5,10,11,12,15)$	
b)	Design a full binary adder with two half adders and a OR gate.	[5+5]
8.a)	Explain about a NOR Latch in detail, with a neat diagram.	
b)	Design a 3-bit counter using T flip flops.	[5+5]
	OR	
9.	Define essential hazard? Implement SR Latch by avoiding Hazard Neat	ly draw
	the diagram of SR latch before hazard and after Hazard elimination.	[10]
10.	Explain about RAM in detail.	[10]
	OR	
11.	What is a micro operation? List and explain its categories with relevant ex	amples.
		[10]

R16

Code No: 133AJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time:	3 Hours	Max. Marks: 75
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all quest Part B consists of 5 Units. Answer any one full question f Each question carries 10 marks and may have a, b, c as sub que	rom each unit.

PART- A		
		(25 Marks)
1.a)	Write the advantages of floating-point representation.	[2]
b)	Distinguish between weighted and non-weighted codes with example.	[3]
c)	What is the use of don't care combinations?	[2]
d)	Implement the following function using only NOR Gates $F=a.(b+c)+$	(b, c), [3]
e)	Define a combinational circuit, give its block diagram.	[2]
f)	Write a short notes on priority encoder.	[3]
g)	Differentiate between a latch and a flip flop.	[2]
h)	Define Hazard. Mention various types of hazards.	[3]
i)	Why programmable AND gates are used in PLA instead of a decoder.	[2]
j)	Write the applications of logical micro operations.	[3]
J <i>)</i>	write the appreciations of togeth intere operations.	[5]
PART-B		
		(50 Marks)
2.a)	Implement AND, OR, NOR by using NAND gates only.	,
b)	Derive the hamming code for the sequence (101011).	[5+5]
- 2	OR	
3.a)	Convert the following to the corresponding bases	
	i) $(343)_5 = ()_6$	
	ii) $(7654)_8 = ()_{10}$	
b)	Explain about even and odd parity check with an example, what is the	
		[5+5]
4.a)	Derive the sum of minterms for $f(a,b,c,d)=a'b+ab'd+c'd$	
b)	Derive and Implement Exclusive OR function involving three variation	ables using
	only NAND function.	[5+5]
	OR	
5.a)	Obtain the simplified expression in POS (product of sums) of	
	$F(w,x,y,z)=\pi(1,2,4,7,12,14,15)$ using K-maps.	
b)	Implement the function $f(a,b,c)=\sum (1,3,4,6)$ using NOR-NOR two	level gate
	structure.	[5+5]
6.	Realize a full subtractor using decoders.	[10]
	OR	
7.a)	Define a multiplexer? Draw a 2:1 multiplexer for the function	
	$f(x,y,z) = \sum (0,2,3,5,7)$	
b)	Write Welder in Madally Asserting Combinational Circuit. IN	[5+5]

What is the drawback of JK flip flop, design a flip flop which overcomes this 8. drawback and explain with neat diagram.

- 9.a) b)
- Draw the block diagram of asynchronous sequential circuit. Analyze latch with NOR gates, derive transition, flow and state tables. [4+6]
- 10. Give the logic implementation of a 32 × 4 bit ROM using decoder of a suitable [10]

OR

11. What do you mean by register transfer? Explain in detail. Also discuss Three state bus buffer.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December - 2019 DIGITAL LOGIC DESIGN

(Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A		
	4	25 Marks)
1 0)	and will be the total and the	C TOTAL CONT.
1.a)	Convert (10110) ₂ to Gray code and (110101) _G to binary number.	[2]
b)	Explain about Floating point number representation with an example.	[3]
c)	What are universal gates and why they are called as universal gates.	[2]
d)	Realize the following function as multilevel NAND-NAND network	
	$f = B(A + CD) + A\bar{C}$	[3]
e)	What is a multiplexer? What is the function of a multiplexer's select input.	[2]
f)	Can more than one decoder output be activated at one time? Justify your answer	
g)	What is a flip-flop? Write down the characteristic equation of S-R flipflop.	[2]
h)	Discuss the difference between synchronous and asynchronous sequential circu	
i)	What are shift micro operations and what are the different types.	[2]
j)	Explain about sequential programmable logic devices	[3]
PART-B		
		50 Marks)
2.a)	Convert the following	Andrew Commencer (No.
,	i) $(53.625)_{10}$ to $(?)_2$ ii) $(3FD)_{16}$ to $(?)_2$ iii) $(A69.8)_{16}$ to $(?)_{10}$	
b)	Perform the decimal subtraction in 8-4-2-1 BCD using 9's complement	
0)	i) Subtract 79 from 26 ii) Subtract 748 from 983.	[5+5]
	OR	[5+5]
		49
3.a)	Simplify the following expression using Boolean algebra rules $A\bar{B} + ABC + A$	$(B+A\bar{B})$
b)	Check whether the received code 10101100 is correctly received or not if ever	n parity is
n n	used.	[5+5]
4.a)	Reduce the following function using K-Map.	
,	$F(A,B,C,D,E) = \Sigma m(1,4,8,10,11,20,22,24,25,26) + d(0,12,16,17)$	
b)	Write down the procedure to convert a given AND-OR gate network to all N	IAND gate
U)	network and illustrate with an example.	[5+5]
	*	
	OR	

5.a) Obtain the minimal sum of products expression for the following function and implement the same using only NAND gates

 $f(A, B, C, D) = \sum (1,4,7,8,9,11) + \sum_{d} (0,3,5)$

b) Realize the following function with i) Multilevel NAND-NAND network and ii) Multilevel NOR-NOR network.

$$Y = \bar{A}B + B(C+D) + E\bar{F}(\bar{B}+\bar{D})$$
 [5+5]

- What is a combinational logic circuit? Implement a Full adder using two half adders and 6.a) one OR gate.
 - **b**) With a neat diagram explain in detail about Decimal Adder.

[5+5]

- 7.a) Design and explain a 4-bit binary parallel Adder/Subtractor.
 - Draw the logic diagram of 2:4 Decoder with an ENABLE input using: i) NAND gates ii) NOR gates. Show that the realization using NAND gates is more convenient to distinguish the selected output with a value of 0. [5+5]
- Convert an SR Flip-Flop into JK Flip-Flop. 8.a)
 - With a neat diagram explain about 4-bit bidirectional shift register. b)

[5+5]

OR

- Design the counter that goes through states 1,2,4,5,7,8,,10,11,1....using JK flip-flops. 9. [10]

A combinational circuit is defined by the functions:

 $F_1 = \sum m(3,5,7)$ $F_2 = \sum m(4,5,7)$

Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs.

b) Explain about Read and Write cycles of a static RAM with neat timing waveforms.

[5+5]

OR

11. With a neat diagram explain in detail about two dimensional memory decoding scheme.